Discovering the Markov network structure

نویسندگان

  • Edith Kovács
  • Tamás Szántai
چکیده

Abstract In this paper a new proof is given for the supermodularity of information content. Using the decomposability of the information content an algorithm is given for discovering the Markov network graph structure endowed by the pairwise Markov property of a given probability distribution. A discrete probability distribution is given for which the equivalence of Hammersley-Clifford theorem is fulfilled although some of the possible vector realizations are taken on with zero probability. Our algorithm for discovering the pairwise Markov network is illustrated on this example, too.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm

‎A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG)‎. ‎There are basically two methods used for learning Bayesian network‎: ‎parameter-learning and structure-learning‎. ‎One of the most effective structure-learning methods is K2 algorithm‎. ‎Because the performance of the K2 algorithm depends on node...

متن کامل

Discovering Structure in Continuous Variables Using Bayesian Networks

We study Bayesian networks for continuous variables using nonlinear conditional density estimators. We demonstrate that useful structures can be extracted from a data set in a self-organized way and we present sampling techniques for belief update based on Markov blanket conditional density models.

متن کامل

Social Network Analysis: Local and Global Centrality as the Communication Network Structure in the Beef Cattle Farmer Groups

The dynamic among farmer institutions has essential problems to be addressed, especially regarding the pattern and process of communication interactions developing farmer institutions. Therefore, an assembly of agribusiness information within the communication network of the farmer group is of primary interest for our study. This study aims to analyze the agribusiness network structure of beef ...

متن کامل

Learning Sparse Markov Network Structure via Ensemble-of-Trees Models

Learning the sparse structure of a general Markov network is a hard computational problem. One of the main difficulties is the computation of the generally intractable partition function. To circumvent this difficulty, we propose to learn the network structure using an ensemble-oftrees (ET) model. The ET model was first introduced by Meilă and Jaakkola (2006), and it represents a multivariate d...

متن کامل

Design and Practical Implementation of a New Markov Model Predictive Controller for Variable Communication Packet Loss in Network Control Systems

The current paper investigates the influence of packet losses in network control systems (NCS’s) using the model predictive control (MPC) strategy. The study focuses on two main network packet losses due to sensor to controller and controller to actuator along the communication paths. A new Markov-based method is employed to recursively estimate the probability of time delay in controller to ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1307.0643  شماره 

صفحات  -

تاریخ انتشار 2013